US009338235B2

a2 United States Patent

Park et al.

US 9,338,235 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)
")

@

(22)

(65)

(30)

Sep. 29, 2011
Oct. 5, 2011
Oct. 11, 2011

(1)

(52)

(58)

METHOD FOR PROVIDING IN-VEHICLE
NOTIFICATION SERVICE,
MACHINE-READABLE STORAGE MEDIUM,
HEAD UNIT DEVICE, AND MOBILE DEVICE

Applicant: Samsung Electronics Co., Ltd.,
Gyeonggi-do (KR)

Ho-Yeon Park, Seoul (KR); Sung-Jin
Lee, Suwon-si (KR); Wuk Kim,
Gyeonggi-do (KR)

Inventors:

Assignee: Samsung Electronics Co., Ltd (KR)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 43 days.

Appl. No.: 13/630,621
Filed: Sep. 28, 2012

Prior Publication Data

US 2013/0086518 A1l Apr. 4,2013
Foreign Application Priority Data

(KR) e 10-2011-0099100
(KR) 10-2011-0101487
(KR) 10-2011-0103833

Int. CI.
GOGF 3/048
HO4L 29/08
HO04W 4/04
HO4W 4/20
HO4L 29/06
U.S. CL
CPC ..o HO4L 67/12 (2013.01); GO6F 3/048
(2013.01); HO4W 4/046 (2013.01); HO4W 4/20
(2013.01); HO4L 65/608 (2013.01)
Field of Classification Search
CPC e GOGF 3/048

(2013.01)
(2006.01)
(2009.01)
(2009.01)
(2006.01)

200

Mobile DeviceI

USPC oo 715/808, 718,761, 771
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,958,272 B2 6/2011 Ko etal.
2005/0203956 Al 9/2005 Dweck et al.
2008/0209034 Al 8/2008 Shin et al.
2011/0219105 Al* 9/2011 Kryzeetal. ... 709/223
2013/0030645 Al* 1/2013 Divineetal. 701/36

FOREIGN PATENT DOCUMENTS

CN 101789186 7/2010

EP 1770 934 4/2007

WO WO 2010/019000 2/2010
OTHER PUBLICATIONS

Raja Bose et al., “Morphing Smart-phones into Automotive Appli-
cation Platforms”, IEEE Computer Society, May 1, 2011, 9 pages.
European Search Report dated Jun. 1, 2015 issued in counterpart
application No. 12835988.2-1870, 5 pages.

Chinese Office Action dated Dec. 3, 2015 issued in counterpart
application No. 201280048024 .3, 19 pages.

* cited by examiner

Primary Examiner — Andrea Leggett
(74) Attorney, Agent, or Firm — The Farrell Law Firm, P.C.

(57) ABSTRACT

A method for providing an in-vehicle notification service on
ahead unitdevice is provided. The method includes receiving
a notification message including event information regarding
an event from a mobile device, upon an occurrence of the
event; generating an action request message requesting
execution of an application related to the event based on the
event information and transmitting the action request mes-
sage to the mobile device; and displaying a Graphical User
Interface (GUI) to a user according to the execution of the
application.

20 Claims, 8 Drawing Sheets

100

Head Unit DeviosI

Device/Senvice discover
% aascrgion 8510
GetSupportedNotiTypes Action 520
A_ARG_TYPE_String
 Refun SupportedNoR Type Tt |~ 00

Display Supporled Notification Types '~5540

User Selects Noification Types tobe - S545

$550 SetNotiConfiguration Action Displayed in Head Unit Device
{SelecledNotiTypes)
Subscribe to the ML Notification Service
8560 — 55}5
ss70~.-------!‘2'@?!°[‘§"_9".‘ ______ >

Receive GUI of Mobile Device by
> VNC or Display Notification
on GUI of Head Unit Device

US 9,338,235 B2

Sheet 1 of 8

May 10, 2016

U.S. Patent

['DIA

asn NYIM 18 asn NYTM 18
o’ vl e’ i’ w7l w7 ort
9|NPOJy uoledlunuIloy 3[NPop UoNBIUNWWOY
7
\
| 1enes ual
Kowapy 062 ONA 06} ~1 ﬁoz_\w Alows
! ogz~{!HOFOMES uaD/IaAIRS
0£2 did 08~ a1y omv
EINEIERNE
W Josuag b17 moaw_ha%mm uN Josuag
{ juiod [04u0) {
ETTE :
022 212 co_um.uu_mz PO [BUILA | 0z}
eswe) |le—> i)
201N JONIBS BlaWEY
{ 3POW [euILLa | oL’
052 0z’ sayonue) FIPIRI omF
09¢ y 09l
Y h
feydsig| {euoydosony| |sexeads Aeidsig | |auoydosoiy| [sexeads
we’ we’ a2’ AT T
In In
0z’ o
00z 001"

U.S. Patent May 10, 2016 Sheet 2 of 8

US 9,338,235 B2

100
!

200
GetSupportedNotiTypes Actioin 82)10
Mobile Device A_ARG_TYPE_NotiTypeList
or A_ARG_TYPE_String {
5220

FIG.2

200
{

Head Unit Device

S310

Mobile Device
Register (ApplD #1, Call)

320
/

Register (AppID #1, Message)

!
310~| App 1 |
(

s Notification

311 [App 2 } 8320 Register (ApplDe #2, Facebook) X Type Manager
' S330
200 100
! !
) . SetNotiConfiguration Action) ,
Mobile Device] Head Unit Device
5410

FIG.4

U.S. Patent May 10, 2016 Sheet 3 of 8 US 9,338,235 B2

200 100
. !
Mobile Device Head Unit Device
Device/Service discovery |
& description S510

GetSupportedNotiTypes Action

A_ARG_TYPE_String
— Retumn Supported Noti Type List

S520
S530

Display Supporled Nolification Types ~— S540
User Selects Notification Types tobe - S545

0 SetNotiConfiguration Action ~ Displayed in Head Unit Device
855 (SeleciedNotTypes)
Subscribe to the ML Notification Service
560 ~« 8575
_______Notification Event______ N !
5710~ Receive GUI of Mobile Device by

—>» VNC or Display Notification
on GUI of Head Unit Device

FIG.5

U.S. Patent

May 10, 2016 Sheet 4 of 8 US 9,338,235 B2
200 100
! !
Mobile Device Head Unit Device
Notification Event
—————————————————————————— »~—S610
(AppIDs)
ication (AppiD
< LaunchApplication (ApplD #1) 5615
A_ARG_TYPE_URL 5620

- Retum VNC URL (VNC:/...)

<

LaunchApplication (App!D #2) if necessary

VNC Streaming >~ $625

5630

A_ARG_TYPE_URL S ses

— Relum RTP URL (RTP/..)

<

User Selects Action for Notification Directly by

RTP Streaming J{>~8640

NG S645

Notification Event
""""" faunchippelalse) "~ > 5690
TemminateApplication (ApplD #1) 5655
TerminateApplication (ApplD #2) 3660

FI1G.6

U.S. Patent

May 10, 2016 Sheet 5 of 8

US 9,338,235 B2

200 100
! !
Mobile Device Head Unit Device

Nofification Event
__________________________)

~S710

Display Notification GUI ~ ~S715

e.g.) User Clicks on Accept - S720

InvokeNotiAction

in Notification GUI

(NGtiD, AcioniD) S725
LaunchApplication (ApplD #1) S730
- ApplD #1is in the ApplDs of Actions
A ARG_TYPE_URL
. Retum YNG URL (NG §735
<: VNC Streaming >-—S740
LaunchApplication (ApplD #2) 3745
ApplD #2 is in the ApplDs of Actions
A ARG_TYPE_URL
~ Relum RTP URL (RTPI.) S750
< RTP Streaming >~S755
Notification Event
""""" Jaunchipp=Taise) ~ "~~~ > ST60
TerminateApplication (AppID #1) S765
i fcal
TerminateApplication (ApplD #2) S770

FIG.7

U.S. Patent

May 10, 2016 Sheet 6 of 8

US 9,338,235 B2

200 100

{ {
Mobile Device Head Unit Device

Notification Event
[T opDstobelaunched) > S810
LaunchApplication {ApplD #1

) aun: A;glca l?e(uppL = o815
LARG_TYPE_UR $820

— Return YNC URL (VNC/1...)

User Selects Action for Notification Di

< VNC Streaming >~ 8825

reclyby VNG 5830

Notification Event

(e.g.) User Clicks on Accept for Incoming Call

= Retum RTP URL (RTP/..)

{ApplDs to be terminated)
TerminateApplication {AppID #1)

< RTP Streaming >~ $850

" VppiDs to bs launched) T >[~5835
< LaunchApplication (ApplD #2) if necessary S840
A_ARG_TYPE_URL 5845

TerminateApplication {AppID #2)

S860

FIG.8

5865

U.S. Patent May 10, 2016 Sheet 7 of 8 US 9,338,235 B2

200 100
{ !
Mobile Device Head Unit Device
________ NofficationEvent ________ 1 co40
GetNofification
< 8915

(ProfilelD, NotilD)

A_ARG_TYPE_Notification
— Return a nofification information

S920

Display Notification GUI ~ |~8925

e.g.) User Clicks on Accept 5930

InvokeNoliAction in Notification GUI
TProflelD, NotiD), AcioniD) 5935
e s
LauncITAPpIication (AppID #1') 045
AppID #1 is in the ApplDs of Actions
A_ARG_TYPE_URL 5950

- Return VNC URL (VNC:/L...)

< VNC Streaming >~8955

LaunchApplication (AppID #2) 3960
ApplD #2 is in the ApplDs of Acticns
A_ARG_TYPE_URL -

— Retun RTP URL (RTP:A....) 5965

< RTP Streaming >~SQ7O

Notification Event

—————————— GelNoffication ->~8975
elNotiication

(ProfileID, NotilD) $980

A ARG_TYPE_Noiification Jcons

- Return a notification information
< TerminateApplicaticn {AppID #1) 5990

TerminateApplicaticn (ApplD #2) 5995 FIG 9

U.S. Patent May 10, 2016 Sheet 8 of 8 US 9,338,235 B2
200 100
? 2
Mabile Device Head Unit Device
< GelApplicationList Action 1010
A_ARG_TYPE_Applist
, Retum Application Lis S101
GetNotiApplicationList Action 51020
A ARG_TYPE_NotiApplList
— Relurn NotiAppList $1025
Compare appList with notiApplist | 51030
I
Display Notification-Supporting | $1035
Application List

SetNotiConfiguration Action

User Selects Applications and/ ~S1040

(NotiAppList)
Subscribe to the ML Notification Service

Nofification Event

FIG.10

or Notification Types
51045
$1050
-»~81055 81360

—>

Receive GUI of Mobile Device by

VNC or Display Netification on
GUI of Head Unit Device

US 9,338,235 B2

1
METHOD FOR PROVIDING IN-VEHICLE
NOTIFICATION SERVICE,
MACHINE-READABLE STORAGE MEDIUM,
HEAD UNIT DEVICE, AND MOBILE DEVICE

PRIORITY

This application claims priority under 35 U.S.C. §119(a)to
a Korean Patent Application filed in the Korean Intellectual
Property Office on Sep. 29, 2011 and assigned Serial No.
10-2011-0099100, a Korean Patent Application filed in the
Korean Intellectual Property Office on Oct. 5, 2011 and
assigned Serial No. 10-2011-0101487, and a Korean Patent
Application filed in the Korean Intellectual Property Office
on Oct. 11, 2011 and assigned Serial No. 10-2011-0103833,
the entire disclosure of each of which is incorporated herein
by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a method for
using an in-vehicle notification service, and more particu-
larly, to a method for providing a notification of a predeter-
mined type between an in-vehicle head unit device and a
mobile device.

2. Description of the Related Art

A carhas become a place in which a user can enjoy various
types of entertainment, not simply to be used for transporta-
tion. Thus, so-called infotainment has been developed to
allow a user to receive and enjoy media such as music or a
video through a mobile device in a vehicle.

Aninfotainment system provides information to users. The
information is typically an audio, a video, or a combination of
both. Interaction between a mobile device in a vehicle and an
in-vehicle head unit device increases user convenience.

Specifically, interaction between the mobile device and the
in-vehicle head unit device will increase user convenience by
providing various types of information to satisty the specific
demands of users.

However, no notification mechanism has been specified for
services requiring notification, like transmission of call infor-
mation, message information, or device state information.

SUMMARY OF THE INVENTION

Accordingly, the present invention has been made to solve
the above-stated problems occurring in the prior art, and an
aspect of the present invention provides a notification mecha-
nism for interaction between a mobile device and an in-
vehicle head unit device to provide various types of informa-
tion such as call information, message information, device
state information, etc. according to specific user demands.

In accordance with one embodiment of the present inven-
tion, a method for providing an in-vehicle notification service
on a head unit device is provided. The method includes
receiving a notification message including event information
regarding an event from a mobile device, upon an occurrence
of'the event; generating an action request message requesting
execution of an application related to the event based on the
event information and transmitting the action request mes-
sage to the mobile device; and displaying a Graphical User
Interface (GUI) to a user according to the execution of the
application.

In accordance with another embodiment of the present
invention, a mobile device for providing an in-vehicle notifi-
cation service is provided. The device includes a display for

10

15

20

25

30

35

40

45

50

55

60

65

2

displaying a Graphical User Interface (GUI) related to an
event; a communication module for communicating with a
head unit device; and a controller for, upon the event occur-
ring, generating a notification message including event infor-
mation about the event, transmitting the notification message
to the head unit device through the communication module,
receiving an action request message requesting execution of
an application related to the event from the head unit device
through the communication module, and transmitting the
GUTI to the head unit device through the communication mod-
ule according to the execution of the application.

In accordance with another embodiment of the present
invention, there is provided a machine-readable storage
medium recording a program for performing the in-vehicle
communication service method.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, objects, features and advan-
tages of certain embodiments of the present invention will be
more apparent from the following detailed description taken
in conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram of an in-vehicle notification
service system according to an embodiment of the present
invention;

FIG. 2 is a diagram illustrating a signal flow of an action
request and a response to the action request;

FIG. 3 is a diagram illustrating a signal flow illustrating
registering notification types at a mobile device;

FIG. 4 is a diagram illustrating a signal flow illustrating
registering a user-intended notification service to the mobile
device;

FIG. 5 is a diagram illustrating a signal flow of an initial-
ization operation for receiving a notification message from
the mobile device at a head unit device;

FIG. 6 is a diagram illustrating a signal flow of displaying
notification event information by Vehicular Networking Con-
ference (VNC) at the head unit device, after the head unit
device receives a notification event message from the mobile
device according to an embodiment of the present invention;

FIG. 7 is a diagram illustrating a signal flow illustrating
displaying notification event information on a native notifi-
cation Graphical User Interface (GUI) at the head unit device,
after the head unit device receives a notification event mes-
sage from the mobile device according to an embodiment of
the present invention;

FIG. 8 is a diagram illustrating a signal flow illustrating
displaying notification event information by VNC at the head
unit device, after the head unit device receives a simple noti-
fication event message from the mobile device according to
another embodiment of the present invention;

FIG. 9 is a diagram illustrating a signal flow illustrating
displaying notification event information on a native notifi-
cation GUI at the head unit device, after the head unit device
receives a simple notification event message from the mobile
device according to another embodiment of the present inven-
tion; and

FIG. 10 is a diagram illustrating a signal flow for support-
ing a plurality of types of notification services with one appli-
cation.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE PRESENT INVENTION

Hereinafter, embodiments of the present invention will be
described with reference to the accompanying drawings.

US 9,338,235 B2

3

Throughout the drawings, the same elements will be desig-
nated by the same reference numerals.

FIG. 1 is a block diagram illustrating an in-vehicle notifi-
cation service system according to an embodiment of the
present invention. The in-vehicle notification service system
includes a head unit device 100 and a mobile device 200 that
are placed in a vehicle. The in-vehicle notification service
system is conforms to the Car Connectivity Consortium
(CCC) standard.

The head unit device 100 includes a first User Interface
(UI) 110, a first sensor unit 120, a first memory 130, a first
communication module 140, a first camera 150, and a first
controller 160. The first UI 110 includes a first speaker 112, a
first microphone 114, and a first display 116. The head unit
device 100 is configured into a communication terminal.

The mobile device 200 is any of a smartphone, a portable
phone, a game console, a laptop computer, a tablet PC, a
Personal Media Player (PMP), a Personal Digital Assistant
(PDA), and the like. The mobile device 200 is a portable
device. The mobile device 200 is configured into a portable
mobile device achieved by implementing a wireless commu-
nication function in a portable device.

The mobile device 200 includes a second UI 210, a second
sensor unit 220, a second memory 230, a second communi-
cation module 240, a second camera 250, and a second con-
troller 260. The second UI 210 includes a second speaker 212,
a second microphone 214, and a second display 216.

The head unit device 100 and the mobile device 200 com-
municate with one another or are connected to one another
through the first and second communication modules 140 and
240 by Transmission Control Protocol/Internet Protocol
(TCP/1P). Moreover, the mobile device 200 and the head unit
device 100 operate using a service protocol such as Universal
Plug and Play (UPnP) to provide an in-vehicle service.

According to a UPnP-based communication scheme, the
mobile device 200 acts as a terminal mode server or a Mirror
Link (ML) server and the head unit device 100 acts as a
terminal mode client or an ML client.

Basic functions common to the mobile device 200 and the
head unit device 100 will now be described. For example, “the
UI110 or 210” means the first UI 110 in the head unit device
100 and the second UI 210 in the mobile device 200. That is,
the following description is a description of the functions of
components in the mobile device 200 or the relationship
between them, or the functions of components in the head unit
device 100 or the relationship between them.

The UI 110 or 210 is a means for receiving a user input or
providing information to a user. The UI 110 or 210 includes a
plurality of buttons, a vibration motor, a connector, a keypad,
and the like. Examples of the UT 110 or 210 include a mouse,
atrack ball, a joystick, or cursor directional keys, and the like.
Cursor control through the mouse, track ball, joystick, or
cursor directional keys is provided for information commu-
nication with the controller 160 or 260 and for control of a
cursor movement on the display 116 or 216.

The speaker 112 or 212 outputs sound corresponding to
various signals (e.g. a radio signal, a broadcast signal, a
digital audio file, a digital video file, and a photo shot) to the
outside of the device 100 or 200 under the control of the
controller 160 or 260. The speaker 112 or 212 outputs sound
corresponding to functions performed by the device 100 or
200. One or more speakers 112 or 212 are installed at an
appropriate position or positions of the device 100 or 200.

The microphone 114 or 214 receives voice or sound and
converts the received voice or sound to an electrical signal
under the control of the controller 160 or 260.

10

20

25

30

40

45

55

4

Buttons are positioned on the front surface, a side surface,
or the rear surface of the device 100 or 200, including a
power/lock button (not shown), a volume button (not shown),
a menu button, a home button, a back button, and a search
button.

The vibration motor converts an electrical signal to
mechanical vibrations under the control of the controller 160
or 260. For instance, upon incoming of a voice call or a video
call in vibration mode, the device 100 or 200 operates the
vibration motor through the communication module 140 or
240. One or more vibration motors are mounted inside the
device 100 or 200. The vibration motor operates in response
to a user’s touch or touch and drag on the display 116 or 216.

The connector is used as an interface for connecting the
device 100 or 200 to an external device or power source (not
shown). Data stored in the memory 130 or 230 is transmitted
to an external device or data is received from the external
device, by a cable connected to the connector under the con-
trol of the controller 160 or 260. Power is received or a battery
is by a cable connected to the connector.

The keypad receives a key input from the user, for control
of'the device 100 or 200. The keypad is a physical keypad on
the device 100 or 200 or a virtual keypad displayed on the
display 116 or 216.

Thedisplay 116 or 216 displays an image received from the
controller 160 or 260 on a screen. The display 116 or 216 is
configured with a Liquid Crystal Display (LCD), a touch
screen, etc. The display 116 or 216 displays an image, gen-
erates a key contact interrupt when a user input tool such as a
finger or a stylus pen touches the surface of the display 116 or
216, and outputs user input information specifying input
coordinates and an input state to the controller 160 or 260
under the controller 160 or 260.

The display 116 or 216 provides Graphical User Interfaces
(GUIs) corresponding to various services or functions (e.g. an
in-vehicle notification service, a call, data transmission,
broadcasting, and photo/video capturing) to the user. The
display 116 or 216 outputs information about a touch input to
a GUI (i.e. user input information) to the controller 160 or
260. The display 116 or 216 receives at least one piece of
touch information through a user’s body part (e.g., a finger) or
a touch input tool (e.g., a stylus pen).

In the present invention, a touch is not limited to contact
between the display 116 or 216 and a user’s body part or a
touch input tool, but includes a non-contact (e.g. a case in
which the display 116 or 216 is apart from the user’s body part
or the touch input tool by about 1 millimeter (mm) or less).
The display 116 or 216 includes a resistive, capacitive, infra-
red, or acoustic wave touch screen.

The sensor unit 120 or 220 includes at least one sensor for
detecting a state of the device 100 or 200 (e.g. the position,
bearing, movement, etc. of the device 100 or 200). For
example, the sensor unit 120 or 220 includes a proximity
sensor for detecting whether a user is in the vicinity of the
device 100 or 200 and how close the user is located to the
device 100 or 200, or a motion/bearing sensor for detecting
movement of the device 100 or 200 (e.g. rotation, accelera-
tion, deceleration, vibration, etc. of the device 100 or 200).
The motion/bearing sensor includes an acceleration sensor, a
gravity sensor, a geomagnetic sensor, a gyro sensor, a shock
sensor, a Global Positioning System (GPS) sensor, a compass
sensor, an acceleration sensor, and the like. The sensor unit
120 or 220 detects the state of the device 100 or 200, generates
a signal corresponding to the detected state, and transmits the
signal to the controller 160 or 260. For example, the GPS
sensor receives signals from a plurality of GPS satellites (not
shown) in earth orbit and calculate the GPS position of the

US 9,338,235 B2

5

device 100 or 200 based on the Time of Arrival (ToA) of the
received signals from the GPS satellites to the device 100 or
200. The compass sensor calculates the bearing of the device
100 or 200.

The communication module 140 or 240 connects the
device 100 or 200 to a server or an external device directly or
via a network. The communication module 140 or 240 is a
wired or wireless communication module. The communica-
tion module 140 or 240 transmits data received from the
controller 160 or 260, the memory 130 or 230, or the camera
150 or 250 by cable or wirelessly. Moreover, the communi-
cation module 140 or 240 receives data through an external
communication line or the air interface by cable or wirelessly
and provides the received data to the controller 160 or 260 or
stores the received data in the memory 130 or 230.

The communication module 140 or 240 includes a mobile
communication module and at least one of short-range com-
munication modules such as a Wireless Local Access Net-
work (WLAN) module 144 or 244, a Bluetooth (BT) module
142 or 242, a Universal Serial Bus (USB) module 146 or 246.
Other examples of the communication module 140 or 240
include an Integrated Services Digital Network (ISDN) mod-
ule, a modem, an infrared module, a Zigbee module, and the
like.

The mobile communication module connects the device
100 or 200 to an external device via a Wide Area Network
(WAN) such as a mobile communication network using at
least one antenna (not shown) under the control of the con-
troller 160 or 260. The mobile communication module trans-
mits and receives a wireless signal to and from an external
device having a phone number or a network address, such as
a portable phone, a smart phone, or a tablet PC, to conduct a
voice call or a video call and exchange data including a Short
Message Service (SMS) message and a MultiMedia Service
(MMS) message.

The WLAN module 144 or 244 is connected to the Internet
in a place where a wireless Access Point (AP) (not shown) is
installed or controls wireless communication between the
device 100 or 200 and an external device, under the control of
the controller 160 or 260. The WLAN module 144 or 244
supports the WL AN standard of the Institute of Electrical and
Electronics Engineers (IEEE), that is, IEEE 802.11x, Wire-
less Fidelity (WiF1), and WiFi Direct.

The short-range communication modules conduct short-
range communication between the device 100 or 200 and an
external device under the control of the controller 160 or 260.
Short-range communication schemes include Bluetooth,
Infrared Data Association (IrDA), and USB communication.

The camera 150 or 250 includes a lens system, an image
sensor, and a flash. The camera converts an optical signal
incident to the lens system to an electrical image signal and
outputs the electrical image signal to the controller 160 or
260. A user captures a video or a still image using the camera
150 or 250.

The lens system forms an image of an object by converging
external incident light. The lens system includes at least one
lens that is a convex lens or a non-spherical lens. The lens
system is symmetrical with respect to an optical axis along the
center of the lens system. The optical axis is defined as a
central axis. The image sensor detects an optical image
formed by external incident light as an electrical image sig-
nal. The image sensor is provided with a plurality of pixel
units arranged in an MxN matrix and the pixel units include a
photodiode and a plurality of transistors. The pixel units
accumulate potential generated by the incident light and the
voltage of the accumulated potential represents the lumi-
nance of the incident light. In processing a still image or an

10

15

20

25

30

35

40

45

50

55

60

65

6

image of a video, an image signal output from the image
sensor is a set of voltages (i.e. pixel values) output from the
pixel units. An image signal is from one frame (i.e. a still
image). A frame includes MxN pixels. The image sensor is a
Charge-Coupled Device (CCD) or Complementary Metal-
Oxide Semiconductor (CMOS) image sensor.

A driver drives the image sensor under the control of the
controller 160 or 260. The driver exposes all of the pixels of
the image sensor or only the pixels of an intended area among
the whole pixels and outputs image data received from the
pixels to the controller 160 or 260.

The controller 160 or 260 processes an image received
from the camera 150 or 250 or an image stored in the memory
130 or 230 on a frame basis and outputs an image frame
matching to the display characteristics of the display 116 or
216 (e.g. size, video quality, resolution, etc.).

The memory 130 or 230 stores applications for implement-
ing various functions or services like an in-vehicle notifica-
tion service, navigation, a video call, and games, images for
providing GUIs related to the applications, user information,
text, data related to the in-vehicle notification service (e.g.
messages, setting values, etc.), background images (a menu
screen, a standby screen, etc.) or operation programs needed
to operate the device 100 or 200, and images captured by the
camera 150 or 250. The memory 130 or 230 is a machine-
readable medium (e.g. a computer-readable medium). The
term “machine-readable medium” means a medium that pro-
vides data to a machine so that the machine can perform a
specific function. The machine-readable medium is a storage
medium. The memory 130 or 230 includes a non-volatile
medium and a volatile medium. All these media are of types
that allow a physical device to read commands from these
media to a machine.

The machine-readable media include, but not limited to, at
least one of a floppy disk, a flexible disk, a hard disk, a
magnetic tape, a Compact Disc Read-Only Memory (CD-
ROM), an optical disk, a punch card, a paper tape, a Random
Access Memory (RAM), a Programmable Read-Only
Memory (PROM), an Erasable PROM (EPROM), and a
flash-EPROM.

The controller 160 or 260 executes an application upon the
request of an external device, in response to user input infor-
mation, or according to an automatic execution setting. The
application executes a program upon the request of the exter-
nal device, in response to the user input information, or
according to the automatic execution setting. The user input
includes an input from the keypad or the display 116 or 216 or
a camera-based input. The controller 160 or 260 includes a
bus for information communication and a processor con-
nected to the bus, for information processing. The controller
160 or 260 includes a RAM connected to a bus, to store
information requested by the processor. The RAM stores
temporary information requested by the processor. The
device 100 or 200 further includes a ROM connected to a bus,
to store static information requested by the processor. The
controller 160 or 260 is a Central Processing Unit (CPU) that
provides overall control to the device 100 or 200 and performs
the in-vehicle notification service method of the present
invention.

A description will now be given of the interaction between
the mobile device 200 and the head unit device 100.

The head unit device 100 and the mobile device 200 com-
municate with one another or are connected to each other
through the first and second communication modules 140 and
240 by TCP/IP. The head unit device 100 and the mobile
device 200 use a service protocol such as UPnP in order to
provide the in-vehicle notification service.

US 9,338,235 B2

7

The second controller 260 of the mobile device 200
includes a terminal mode server device module 270 for UPnP
communication. The terminal mode server device module
270 includes an ML notification service module 272 and a
Terminal Mode (TM) application server service module 274.

The ML notification service module 272 is responsible for
a notification service between the head unit device 100 and
the mobile device 200. The notification service has a service
type such as urn:schemas-upnp-org:service: ML Notification:
1. The ML notification service module 272 are also called a
TM notification service module. In this case, the service type
is urn:schemas-upnp-org:service: TmNotificationServer:1.

The TM application server service module 274 executes or
terminates applications in the mobile device 200 or manages
applications, for example, retrieves an application list.

The second controller 260 further includes a second Real-
Time Transport Protocol (RTP) server/client module 280 for
RTP-based media session connection and a Virtual Network
Computing (VNC) server module 290 for VNC-based media
session connection. VNC is used to display the same screen as
displayed on the display 216 of the mobile device 200 on the
display 116 of the head unit device 100.

The first controller 160 of the head unit device 100 includes
aterminal mode control point 170 for UPnP communication.
The terminal mode control point 170 manages media session
connectivity and VNC connectivity. The controller 160 fur-
ther includes a first RTP server/client module 180 for RTP-
based media session connection and a VNC client module
190 for VNC-based media session connection.

The terminal mode control point 170 operates the second
RTP server/client module 280 of the mobile device 200 and
the first RTP server/client module 180 of the head unit device
100, for media streaming connection, that is, RTP connection
to conduct a call between the mobile device 200 and the head
unit device 100 by transmitting an action request message (or
an action invocation message) including a command to the
TM application server service module 274. Moreover, the
terminal mode control point 170 operates the VNC server
module 290 of the mobile device 200 by transmitting a Laun-
chApplication action request message including a Laun-
chApplication action command to the TM application server
service module 274. The mobile device 200 transmits, to the
head unit device 100, a response message including a Uni-
form Resource Locator (URL) where the VNC client module
190 can access the VNC server module 290 as a return value
of the LaunchApplication action command.

For a VNC connection, the VNC server module 290 of the
mobile device 200 and the VNC client module 190 of the head
unit device 100 are operated.

The terminal mode control point 170 uses the following
UPnP action commands as listed in Table 1 below between
the terminal mode control point 170 and the ML notification
service module 272.

TABLE 1
Device Control
Name R/O Point R/O
GetSupportedNotiTypes() R R
SetNotiConfiguration() R R
InvokeNotiAction() R R

In Table 1, R is stands for REQUIRED and O stands for
OPTIONAL. Device R/O indicates whether the ML notifica-
tion service module 272 (or the mobile device 200) is required
and Control Point R/O indicates whether the terminal mode
control point 170 is required.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 2 is a diagram illustrating a signal flow for describing
an action request and a response to the action request.

To request a list of notification types supported by the
mobile device 200, the head unit device 100 transmits a
GetSupportedNotiTypes action command to the mobile
device 200.

Referring to FIG. 2, step S210 is an action request step.
Specifically, the terminal mode control point 170 of the head
unit device 100 transmits a GetSupportedNotiTypes action
request message including a GetSupportedNotiTypes action
command requesting a list of notification types supported by
the mobile device 200 to the ML notification service module
272 of the mobile device 200 in step S210.

In step S220, the ML notification service module 272 trans-
mits a response message including notification types to the
terminal mode control point 170 in response to the action
request message.

The response to the GetSupportedNotificationTypes action
command includes notification types in the form of A_ARG_
TYPE_String separated by commas (,) as illustrated in Table
2. A_ARG_TYPE_is a temporary value.

Each action command has a name and at least one factor or
argument. The argument has a Direction and RelatedStat-
eVariable. Direction indicates whether the argument is set as
an argument of the action command or output as the result of
the action command. RelatedStateVariable is used to deter-
mine an argument type.

TABLE 2
Argument Direction RelatedStateVariable
NotiTypes ouT A_ARG_ TYPE_ String

Preferably, NotiTypes is configured into a form identifiable
to a user. For instance, NotiTypes indicates a call, message,
alarm, calendar, etc. Upon receipt of notification types, the
terminal mode control point 170 separates commas from the
notification types and configures and displays a screen, that
is, a notification GUI (or UI) so that the user selects notifica-
tion types to receive from the mobile device 200 through the
head unit device 100.

FIG. 3 is a diagram illustrating a signal flow of an operation
for registering notification types at the mobile device.

Referring to FIG. 3, the mobile device 200 includes a
notification type manager 320 for managing a notification
type and a plurality of applications 310 and 311 for providing
a notification service. Each application that provides a noti-
fication service inside the mobile device 200 registers infor-
mation about the type of a notification that the application
provides to the notification type manager 320. Each of the
applications 310 and 311 registers its application 1D, AppID
(or A_ARG_TYPE_AppID) and its notification type to the
notification type manager 320. One application supports a
plurality of notification services and one notification type is
supported by a plurality of applications.

The first application 310 (Appl) generates a first register
message (or a subscribe message requesting subscription)
including its application ID, AppID#1 and a notification type,
Call and transmits the first register message to the notification
type manager 320 in step S310.

In step S320, Appl generates a second register message
including AppID#1 and a notification type, Message and
transmits the second register message to the notification type
manager 320.

The second application 311 (App2) generates a third reg-
ister message including its application ID, AppID#2 and a
notification type, Facebook and transmits the third register
message to the notification type manager 320 in step S330.

US 9,338,235 B2

9

A mobile device platform or the notification type manager
320 preserves a basic notification type list and an application
uses one of the notification types listed in the notification type
list set by the mobile device platform or the notification type

10

Thehead unit device 100 sets the user-intended notification
types, SelectedNotiTypes as the argument of the SetNotiCon-
figuration action command, as illustrated in Table 3 below.

manager 320. If the application needs a notification type that 5 TABLE 3

is not listed in the. notlﬁcatlon type 11.st, the application Argument Direction RelatedStateVariable
includes the new notification type in a register message. Pref-

erably, the new notification type is readily identifiable to a SelectedNotiTypes IN A_ARG_TYPE_ String
user.

FIG. 4is a diagram illustrating a signal flow of an operation 1° The user-selected notification types are separated by com-
for registering user-intended notification messages to the mas (,). If the user wants to receive notification services for all
mobile device. notification types, a “*” value is used. This kind of notifica-

tion type selection is made according to preset information.

Referﬁng to.FIG. 4, the head.unit deVice. 100 tr?lnsmits, to that IZ pdefault selection information.g P ’
the mobile device 200, a SetNotiConfiguration actionrequest | . Table 4 illustrates the structure of notification event infor-
message including user-intended notification service types ~ mation (or event information), Notification State Variable
and a SetNotiConfiguration action command requesting reg- included in a notification event message (an event notification
istration of the user-intended notification service type in step message or a notification message) that the mobile device 200
S410. transmits to the head unit device 100.

TABLE 4
Element Description Parent Availability
notification ~ Notification element contains detail — Required
information of an event occurred on a
phone and is delivered to a head unit
notilD Unique identifier of Notification event. notification Required
notiType Notification Type. notification Required
(A_ARG_TYPE_ String)
notiTitle Title of Notification event. In other notification ~ Optional
words, it is a name of an event occurred.
For example, new text message or
email.
(A_ARG_TYPE_ String)
notiBody Body of Notification message. It notification ~ Optional
includes detailed information of an
event for a user. For example, text
message content for new text message
event. Caller ID for an incoming call event.
(A_ARG_TYPE_ String)
launchApp It indicates that application ID in the notification Required
appIDs uses LaunchApplication action
or Terminate Application action.
If the value is set to true, then HU
invoke LaunchApplication action with
one of the application IDs in the app
IDs. If false, then HU invoke
TerminateApplication instead of
LaunchApplication.
applDs Comma separated list of application notification Required
IDs. Application ID in the appIDs is
unique identifier and MUST be identical
with one on A_ ARG_TYPE_ AppList.
(A_ARG_TYPE_ String)
priority Level of importance given to notification ~ Optional
Notification message.
actions A list of action for a notification. The notification Required
list is provided by an application
initiating the notification so a user can
directly select a user action for the
notification. For example, the user can
“Reply” to the new text message or
“Ignore” it. The list includes “Reply”
and “Ignore” actions as its elements.
action actions Required
actionID Unique identifier of action. When a user action Required
selects an action for a notification
through the notification Ul, actionID
MUST be sent to the Mobile device.
actionName Action name. This name will be shown action Required
as a button on the native notification UI.
applDs Comma separated list of application action Required

IDs. Application ID in the appIDs is
unique identifier and MUST be identical
with one on A_ ARG_TYPE_ AppList.
(A_ARG_TYPE_ String)

US 9,338,235 B2

11

The notification element contains detailed information
about an event that has occurred in the mobile device 200 (e.g.
a phone) and is delivered to the head unit device 100. The
notilD element indicates the unique IDentifier (ID) of the
notification event. The notiType element indicates a notifica-
tion type that is expressed as A_ARG_TYPE_String. The
notiTitle element specifies the title of the notification event,
that is, the name of the notification event that has occurred.
For example, the title of the notification event is a new text
message or email, expressed as A_ARG_TYPE_String. The
notiBody element is the body of the notification message
containing detailed information about the event for a user. For
example, the notiBody element does include text message
content for a new text message event or a caller ID for an
incoming call event, expressed as A_ARG_TYPE_String.
ThelaunchApp element indicates that an application ID in the
applDs element indicates a LaunchApplication action or a
TerminateApplication action. If the value of the launchApp
element is set to true, the head unit device 100 invokes the
LaunchApplication action with one of application IDs in the
applDs. On the other hand, if the value is set to false, the head
unit device 100 invokes the TerminateApplication action
instead of the LaunchApplication action. The appIDs element
provides a comma-separated list of application IDs. Each
application ID in the appIDs element is a unique 1D and must
be identical to one on A_ ARG_TYPE_AppL.ist, expressed as
A_ARG_TYPE_String. The priority element specifies an
importance level given to the notification message. The
actions element provides a list of actions for a notification.
The action list is provided by an application initiating the
notification so that a user directly selects a user action for the
notification. For example, the user can reply to the new text
message or ignore it. The list includes “Replay” and “Ignore”
actions as its elements. The actionID element is aunique ID of
an action. When a user selects an action for a notification
through a notification U, the actionID element must be trans-
mitted to the mobile device 200. The actionName element
indicates an action name. The action name will be shown as a
button on a native notification UI. The appIDs element pro-
vides a comma-separated list of application IDs. Each appli-
cation ID in the applelDs element is a unique ID and is
identical to one on A_ARG_TYPE_AppList, expressed as
A_ARG_TYPE_String.

Each of the appIDs element including the notification ele-
ment as its parent and the appIDs element including the action
element as its parent takes the form of a comma-separated list
of application IDs (i.e. applDs) expressed as A_ARG_
TYPE_AppID. Unless the head unit device 100 provides a
native notification GUI, appIDs set in the applDs element
including the notification element as its parent are set as
arguments of LaunchApplication action commands or Termi-
nateApplication action commands. The mobile device 200
then invokes the LaunchApplication actions sequentially.
One of the LaunchApplication action and the TerminateAp-
plication action is selected based on the truth value of the
launchApp element. If the launchApp element is set to true,
the mobile device 200 invokes the Launch Application action.
Ifthe launchApp element is set to false, the mobile device 200
invokes the TerminateApplication action.

However, if the head unit device 100 provides the native
notification GUI, the appIDs element having the notification
element as its parent is ignored. The appIDs element being a
child element of an action element corresponding to a button
selected by the user, a button automatically selected by the
head unit device 100, or a button selected by the head unit
device 100 according to a predetermined rule from among
actions represented as buttons of the native notification GUI

10

15

20

25

30

35

40

45

50

55

60

65

12

is executed in the same manner as the appIDs element includ-
ing the notification element as its parent.

If the head unit device 100 supports the native notification
GUI, the actions described in Table 4 are represented as
buttons in the native notification GUI. Upon the user selection
of one of the buttons, the head unit device 100 transmits to the
mobile device 200 an InvokeNotiAction action request mes-
sage including an InvokeNotiAction action command. The
InvokeNotiAction command includes an action ID corre-
sponding to the selected button and the ID of the notification
message, ActionID and NotiID. Table 5 below lists arguments
of the InvokeNotiAction action.

TABLE 5
Argument Direction RelatedStateVariable
NotilD IN A_ARG_TYPE_ NotiID
ActionlD IN A_ARG_TYPE_ ActionID

Table 6 below lists arguments of another InvokeNotiAction
action configured to reduce one LaunchApplication action
invocation.

TABLE 6
Argument Direction RelatedStateVariable
NotilD IN A_ARG_TYPE_ NotiID
ActionlD IN A_ARG_TYPE_ ActionID
AppID IN A_ARG_TYPE_ AppID
ProfileID IN A_ARG_TYPE_ ProfileID
AppURI ouT A_ARG_TYPE_URI

The AppID argument includes the first application 1D,
ApplD of the appIDs element having the action element as its
parent. The mobile device 200 transmits to the head unit
device 100 a response message including a Uniform Resource
Identifier (URI) with which to access an application having
ApplD in response to the action request message.

FIG. 5 is a diagram illustrating a signal flow of an initial-
ization operation for receiving a notification message from
the mobile device at the head unit device.

Step S510 is a device/service discovery & description step
in which each of the mobile device 200 and the head unit
device 100 discovers the other party by UPnP.

In step S520, when a user wants to receive only intended
notification types from the mobile device 200 through the
head unit device 100, the head unit device 100 transmits a
GetSupportedNotiTypes action request message including a
GetSupportedNotiTypes action command to the mobile
device 200.

The mobile device 200 transmits a response message
including its supported notification types to the head unit
device 100 in response to the action request message in step
S530. The notification types are expressed in the form of
A_ARG_TYPE_String, that is, strings. The response mes-
sage includes a list of supported notification types.

In step S540, the head unit device 100 displays the received
notification types on the first display 116.

The user selects intended notification types from among
the displayed notification types in step S545.

The head unit device 100 transmits to the mobile device
200 a SetNotiConfiguration action request message that
includes the user-selected notification service types and a
SetNotiConfiguration action request requesting registration
of these notification types in step S550.

US 9,338,235 B2

13

In step S560, the head unit device 100 transmits a subscribe
message requesting subscription to an ML notification ser-
vice to the mobile device 200.

Only when an event to be notified regarding the user-
selected notification types has occurred, the mobile device
200 transmits to the head unit device 100 a notification event
message including notification event information in step
S570.

In step S575, upon the receipt of the notification event
message, the head unit device 100 displays the notification
event information on the first display 116, that is, on a GUL, or
receives a screen, that is, a GUI displayed on the second
display of the mobile device 200 by the VNC and displays the
received screen to the user.

FIG. 6 is a diagram illustrating a signal flow for displaying
notification event information by the VNC at the head unit
device, after the head unit device receives a notification event
message from the mobile device according to an embodiment
of the present invention.

Referring to FIG. 6, upon the occurrence of an event cor-
responding to any of user-selected notification types, the
mobile device 200 transmits a notification event message
including notification event information such as an applDs
element to the head unit device 100 in step S610.

In step S615, the head unit device 100 extracts an appIDs
element including a notification element included in the noti-
fication event message as a parent, extracts applDs based on
commas from the appIDs element, and transmits a Laun-
chApplication action request message including a Laun-
chApplication command having the first (e.g., AppID#1) of
the applDs as an argument to the mobile device 200.

The mobile device 200 transmits to the head unit device
200 a response message including a URL as a return value of
the LaunchApplication command, at which the VNC client
module 190 can access the VNC server module 290 in step
S620. The VNC URL takes the form of “VNC://....”

In step S625, if the VNC server module 290 is accessible
using the VNC URL, the head unit device 100 activates the
VNC client module 190 and transmits the VNC URL to the
VNC client module 190. The VNC client module 190 can
access the VNC server module 290 through the VNC URL.
The head unit device 100 then receives a screen, i.e. a GUI
displayed on the display 216 of the mobile device 200 by a
VNC connection or VNC streaming.

The mobile device 200 then sequentially receives Laun-
chApplication action commands with other appIDs following
the first appID and executes applications mapped to the
applDs. If the applications have already been executed, the
applications are notified at the top of the screen.

The head unit device 100 transmits to the mobile device
200 a LaunchApplication action request message including
an LaunchApplication action command that has the second
(e.g. ApplD#2) of the applDs included in the notification
event message as an argument in step S630.

The mobile device 200 transmits to the head unit device
200 a response message including an RTP URL as a return
value of the LaunchApplication action command, at which
the first RTP server/client module 180 of the head unit device
100 can access the second RTP server/client module 280 of
the mobile device 200 in step S635. The RTP URL takes the
form of “RTP://~

In step S640, if the second RTP server/client module 280 is
accessible using the RTP URL, the head unit device 100
activates the first RTP server/client module 180 and transmits
the RTP URL to the first RTP server/client module 180. The
first RTP server/client module 180 accesses the second RTP
server/client module 280 through the RTP URL. The head

20

25

40

45

14

unit device 100 then receives voice data of an incoming call at
the mobile device 200 or transmit the user’s voice data of the
call to the mobile device 200, by an RTP connection or
streaming.

Once a VNC connection is established in the above man-
ner, a user can control a screen, i.e. a GUI displayed on the
second display 216 of the mobile device 200 through the head
unit device 100.

The user directly selects an action for the notification by
VNC in step S645. That is, the user selects an action button
displayed on the GUI of the head unit device 100.

In step S650, the mobile device 200 transmits to the head
unit device 100 a notification event message having a laun-
chApp element set to false.

The head unit device 100 transmits to the mobile device
200 a TerminateApplication action request message includ-
ing a Terminate Application action command having an argu-
ment with an appID set to AppID#1 in step S655. The mobile
device 200 then terminates the application corresponding to
ApplID#1.

In step S660, the head unit device 100 transmits to the
mobile device 200 a TerminateApplication action request
message including a TerminateApplication action command
having an argument with an applID set to AppID#2 and the
mobile device 200 terminates the application corresponding
to ApplD#2.

FIG. 7 is a diagram illustrating a signal flow illustrating an
operation for displaying notification event information on a
native notification GUI at the head unit device, after the head
unit device receives a notification event message from the
mobile device according to an embodiment of the present
invention.

Referring to FIG. 7, upon the occurrence of an event cor-
responding to any of user-selected notification types, the
mobile device 200 transmits a notification event message
including notification event information to the head unit
device 100 in step S710.

In step S715, the head unit device 100 configures a notifi-
cation GUI based on the contents of the notification event
message.

A user selects an Accept button on the notification GUI in
step S720. That is, the user determines whether to receive a
notification service.

Upon the user selection of a button on the notification GUI,
the head unit device 100 transmits to the mobile device 200 an
InvokeNotiAction action request message including an Invo-
keNotiAction action command that has an action ID corre-
sponding to the button, ActionID and an ID of the notification
event message, NotilD as arguments in step S725.

Applications corresponding to appIDs set in an applDs
element being a child element of the user-selected action are
executed sequentially by LaunchApplication actions. For
example, in the presence of a single appID in the appIDs
element, the LaunchApplication action is performed once. In
the presence of two appIDs in the appIDs element, the Laun-
chApplication action is performed twice. If an InvokeNoti-
Action action command as illustrated in Table 6 is used, one
InvokeNotiAction action achieves the same effect as per-
forming the LaunchApplication action once. Therefore, for
example, it is not necessary to additionally transmit a Laun-
chApplication action request message for executing the
application with AppID#1 as its applD.

In step S730, the head unit device 100 extracts an applDs
element including a notification element set in the notification
event message as its parent, extracts applDs from the appID
element based on commas, and transmits to the mobile device
200 a LaunchApplication action request message including a

US 9,338,235 B2

15

LaunchApplication action command that has the first appID
(e.g. AppID#1) of the appIDs element as an argument.

The mobile device 200 transmits to the head unit device
100 a response message having a URL at which the VNC
client module 190 can access the VNC server module 290, as
a return value of the LaunchApplication action command in
step S735. The VNC URL takes the form of “VNC://~

In step S740, if the VNC server module 290 is accessible
using the VNC URL, the head unit device 100 activates the
VNC client module 190 and transmits the VNC URL to the
VNC client module 190. The VNC client module 190 access
the VNC server module 290 through the VNC URL. Then, the
head unit device 100 receives a screen, i.e. a GUI displayed on
the display 216 of the mobile device 200 by a VNC connec-
tion or streaming.

In step S745, the head unit device 100 then transmits, to the
mobile device 200, a LaunchApplication action request mes-
sage including a LaunchApplication command having the
second (e.g. AppID#2) of the appIDs included in the notifi-
cation event message as an argument.

The mobile device 200 transmits to the head unit device
100 a response message including an RTP URL as a return
value of the LaunchApplication action command, at which
the first RTP server/client module 180 can access the second
RTP server/client module 280 in step S750. The RTP URL
takes the form of “RTP://~

In step S755, if the second RTP server/client module 280 is
accessible using the RTP URL, the head unit device 100
activates the first RTP server/client module 180 and transmits
the RTP URL to the first RTP server/client module 180. The
first RTP server/client module 180 can access the second RTP
server/client module 280 through the RTP URL. The head
unit device 100 receives voice data of a call incoming at the
mobile device 200 or transmit user’s voice data of the call to
the mobile device 200, by an RTP connection or streaming.

Once a VNC connection is established in the above man-
ner, a user can control a screen, i.e. a GUI displayed on the
second display 216 of the mobile device 200 through the head
unit device 100.

In step S760, the mobile device 200 transmits to the head
unit device 100 an event notification message having a laun-
chApp element set to false.

The head unit device 100 transmits to the mobile device
200 a TerminateApplication action request message that
includes a TerminateApplication action command having an
argument with an applD set to AppID#1 and the mobile
device 200 terminates the application corresponding to
ApplD#1 in step S765.

In step S770, the head unit device 100 transmits, to the
mobile device 200, a TerminateApplication action request
message that includes a TerminateApplication action com-
mand having an argument with an appID set to AppID#2 and
the mobile device 200 terminates the application correspond-
ing to AppID#2.

FIG. 8 is a diagram illustrating a signal flow of an operation
for displaying notification event information by the VNC at
the head unit device, after the head unit device receives a
simple notification event message from the mobile device
according to another embodiment of the present invention.

Table 7 below illustrates the data structure of a notification
event message.

10

15

20

25

30

35

40

45

55

60

65

16
TABLE 7

Element Description Parent Availability

notiEvent Simple notification event message.
This element contains simple
information to let the head unit
device know that the notification
event has occurred to a phone.
Unique identifier of Notification
event.

Comma separated list of
application IDs. Application ID

in the appIDs is unique identifier
and MUST be identical with one
onA_ARG_TYPE_ AppList,
and each application ID has a
prefix value between ‘L’ or “T".

If the Application ID has a

prefix value with ‘1, the head unit
will invoke the LaunchApplication
action with the application

1D, whereas if it has a prefix

value with ‘T’, the head

unit invokes

TerminateApplication action

with the application ID.
(A_ARG_TYPE_ String)

Required

notilD notiEvent Required

appIDs notiEvent Required

The notiEvent element indicates that the transmitted mes-
sage is a simple notification event message and lets the head
unit device 100 know that a notification event has occurred in
the mobile device 200. The notilD element is a unique ID of
the notification event. The appIDs element provides a
comma-separated list of application IDs. An application ID in
the appIDs element is a unique ID and must be identical to one
onA_ARG_TYPE_AppList. Each application ID has a prefix
value between “L” and “T”. If the application ID has the
prefix value of “L”, the head unit device 100 invokes the
LaunchApplication action with the application ID. On the
other hand, if the application ID has the prefix value of “T”,
the head unit device invokes the Terminate Application action
with the application ID. The applDs element is expressed as
A_ARG_TYPE_String.

The notiEvent element (or notiEvent state variable) indi-
cates to the head unit device 100 that a notification event has
occurred in the mobile device 200. The notification event
message includes the notilD element indicating the unique ID
of the event notification, and the appIDs element for directly
executing an application such as VNC for the head unit device
100 that does not support a native notification GUI. The
applDs element includes a plurality of application IDs sepa-
rated by commas. “L”” or “T”” are added before each applica-
tion ID. When “L” is present before an application ID, an
application corresponding to the application ID is executed
by invoking the LaunchApplication action with the applica-
tion ID. When “T” is present before an application ID, an
application corresponding to the application ID is terminated
by invoking the TerminateApplication action with the appli-
cation ID. Table 8 below illustrates an embodiment of the
applDs element. The “L.” and “T” values are replaced with
other distinguishing values. For instance, “L.” can be replaced
with “*” and “T” can be replaced with “$”.

Or, instead of using “L”, no tag is added before an appli-
cation ID to indicate executing an application and “!” is added
before the application ID to indicate termination of the appli-
cation, as illustrated in Table 9.

TABLE 8

<appIDs>L0x01,L0x02,TOx03</appIDs>

US 9,338,235 B2

17
TABLE 9

<applDs>0x01,0x02,10x03</appIDs>

Referring to Table 8, upon receipt of a notification event
message having an appIDs element, the head unit device 100
which intends to display a notification GUI by VNC executes
an application with an application ID of 0x01 by invoking the
LaunchApplication and subsequently executes an application
with an application ID of 0x02 by invoking the LaunchAp-
plication. On the other hand, the head unit device 100 termi-
nates an application with an application ID of 0x03 by invok-
ing the Terminate Application action.

If the head unit device 100 provides a native notification
GUI, it ignores the appIDs element.

Upon receipt of a notification event message having the
above-described data structure, the head unit device 100
sequentially executes or terminates applications by interpret-
ing the applDs element.

Upon occurrence of an event corresponding to any of user-
selected notification types, the mobile device 200 transmits to
the head unit device 100 a notification event message includ-
ing notification event information with application IDs of
applications to be executed in step S810.

In step S815, the head unit device 100 extracts an appIDs
element including a notification element in the notification
event message as a parent, extracts applDs from the appIDs
element based on commas, and transmits to the mobile device
200 a LaunchApplication action request message including a
LaunchApplication action command with the first appID
(e.g., AppID#1) of the appIDs element as an argument.

The mobile device 200 executes an application with
AppID#1 by invoking the LaunchApplication action in step
S820. If the application with AppID#1 is being executed, the
application is notified at the top of the screen of the mobile
device 200. The mobile device 200 transmits to the head unit
device 100 a response message including a URL at which the
VNC client module 190 can access the VNC server module
290, as a return value of the LaunchApplication action com-
mand. The VNC URL takes the form of “VNC://~

In step S825, if the VNC server module 290 is accessible
using the VNC URL, the head unit device 100 activates the
VNC client module 190 and transmits the VNC URL to the
VNC client module 190. The VNC client module 190
accesses the VNC server module 290 through the VNC URL.
The head unit device 100 then receives a screen, i.e. a GUI
displayed on the display 216 of the mobile device 200 by a
VNC connection or streaming. When the notification GUTI of
the mobile device 200 is shown on the head unit device 100 by
VNC, the user can control the mobile device 200 by VNC.
Each time the mobile device 200 receives a user input by
VNC, the mobile device 200 transmits an event notification
message illustrated in Table 7 to the head unit device 100,
when needed.

In step S830, the user directly selects an action for the
notification by VNC. For example, the user selects an Accept
button for an incoming call by VNC. That is, the user selects
the Accept button displayed on the GUI of the head unit
device 100.

In step S835, the mobile device 200 transmits a notification
event message to the head unit device 100 in order to imple-
ment RTP. The notification event message includes an appIDs
element indicating applications to be executed.

The head unit device 100 transmits to the mobile device
100 a LaunchApplication action request message including a
LaunchApplication action command with the second appID
(e.g., AppID#2) of appIDs included in the notification event
message as an argument in step S840.

15

20

25

30

40

45

50

55

18

The mobile device 200 transmits to the head unit device
200 a response message including an RTP URL as a return
value of the LaunchApplication action command, at which
the first RTP server/client module 180 accesses the second
RTP server/client module 280 in step S845. The RTP URL
takes the form of “RTP://....”

In step S850, if the second RTP server/client module 280 is
accessible using the RTP URL, the head unit device 100
activates the first RTP server/client module 180 and transmits
the RTP URL to the first RTP server/client module 180. The
first RTP server/client module 180 accesses the second RTP
server/client module 280 through the RTP URL. Then, the
head unit device 100 receives voice data of a call incoming at
the mobile device 200 or transmit the user’s voice data of the
call to the mobile device 200, by an RTP connection or
streaming. When the user terminates the call on the VNC
GUI, the mobile device 200 transmits a notification event
message to the head unit device 100 in order to terminate the
VNC connection and the RTP connection.

In step S855, the mobile device 200 transmits a notification
event message including IDs of applications to be terminated
to the head unit device 100.

The head unit device 100 transmits, to the mobile device
200, a TerminateApplication action request message includ-
ing a Terminate Application action command that has an argu-
ment with an appID set to AppID#1 and the mobile device
200 terminates the application corresponding to AppID#1 in
step S860.

In step S865, the head unit device 100 transmits to the
mobile device 200 a TerminateApplication action request
message including a TerminateApplication action command
that has an argument with an applD set to AppID#2 and the
mobile device 200 terminates the application corresponding
to ApplD#2.

FIG. 9 is a diagram illustrating a signal flow illustrating
displaying notification event information on a native notifi-
cation GUI at the head unit device, after the head unit device
receives a simple notification event message from the mobile
device according to another embodiment of the present inven-
tion.

Referring to FIG. 9, upon the occurrence of an event cor-
responding to any of user-selected notification types, the
mobile device 200 transmits a notification event message
including event notification information to the head unit
device 100 in step S910.

When the mobile device 200 transmits a notification event
message to the head unit device 100, the head unit device 100
has difficulty in configuring a native notification GUI only
with information included in the notification event message.
Therefore, the head unit device 100 acquires additional infor-
mation about the event by invoking a GetNotification action
as illustrated in Table 10 below.

TABLE 10
Argument Direction RelatedStateVariable
ProfileID IN A_ARG_TYPE_ ProfileID
NotilD IN A_ARG_TYPE_ NotilD
Notification OouT A__ARG_TYPE_ Notification

In step S915, to acquire more detailed notification event
information by the GetNotification action, the head unit
device 100 includes an event notification ID, NotilD set in the
notification event message and a self-generated profile ID in
a GetNotification action request message and transmits the
GetNotification action request message to the mobile device
200.

The mobile device 200 transmits to the head unit device
100 a notification information message (an event information

US 9,338,235 B2
19 20

message or a second notification message) including detailed NotilD in response to the GetNotification action request mes-
information about the notification event corresponding to the sage, as illustrated in Table 11 in step S920.
TABLE 11
Element Description Parent Availability
notification Notification element contains detail — Required

information of an event occurred on a phone
and is delivered to a head unit

notilD Unique identifier of Notification event. notification Required
(A_ARG_TYPE_ NotiID)
notiType Type of Notification event. The notification notification Required

type is provided by an application initiating
the notification. It indicates what kind of
notification it is. For example, “Call”,
“Message”, or “Alarm” etc.
(A_ARG_TYPE_ String)
notiStyle Display style of a notification. Pop-up style, notification ~ Optional
banner style, full-screen style and hidden style
are available. It MUST be one of the values
“popup”, “banner”, “fullscreen” and “hidden”.
(A_ARG_TYPE_ String)
notiTitle Title of Notification event. In other words, it notification ~ Optional
is a name of an event occurred. For example,
new text message or email.
(A_ARG_TYPE_ String)
notiBody Body of Notification event. It includes notification ~ Optional
detailed information of an event for a user.
For example, text message content for new
text message event. Caller ID for an incoming

call event.

(A_ARG_TYPE_ String)
iconList List of available application icons notification ~ Optional
icon* Describes an application icon iconList Optional
mimetype Type of icon image icon Required
width Width of icon (A__ARG_TYPE_INT) icon Required
height Height of icon (A__ARG__ TYPE_ INT) icon Required
depth Color depth of icon icon Required

(A_ARG_TYPE_INT)
url URL where icon is available icon Required
applDs Comma separated list of application IDs. notification Required

Application ID in the appIDs is unique
identifier and MUST be identical with one on
A_ARG_TYPE_ AppList, and each
application ID has a prefix value between ‘L’
or “T". If the Application ID has a prefix value
with ‘I, the head unit will invoke the
LaunchApplication action with the application
ID, whereas if it has a prefix value with ‘T,
the head unit invokes TerminateApplication
action with the application ID. If the
notification message contains actions element,
the value of this element cannot be empty
string.
(A_ARG_TYPE_ String)
priority The priority of the notification. It MUST be notification ~ Optional
one of the values between “normal” and
“emergency”.
(A_ARG_TYPE_ String)
actions A list of action for a notification. The list is notification ~ Optional
provided by an application initiating the
notification so a user can directly select one of
those actions for the notification. For
example, the user can “Reply” to the new text
message or “Ignore” it. The list includes
“Reply” and “Ignore” actions as its elements.
This element MUST only be used in the
notification message when the head unit
shows its own notification UI with buttons to
get the user input; otherwise the mobile device
MUST not include this element in the
notification message.
action* actions Required
actionID Unique identifier of action. When a user action Required
selects an action for a notification through the
native notification UI served by the head unit,
actionID MUST be sent to the mobile device.
(A_ARG_TYPE_ ActionID)
actionName Action name. This name will be shown as a action Required
button on the native notification UL
(A_ARG_TYPE_ String)

US 9,338,235 B2

21
TABLE 11-continued

22

Element Description Parent

Availability

applDs Comma separated list of application IDs. action
Application ID in the appIDs is unique
identifier and MUST be identical with one on
A_ARG_ TYPE_ AppList, and each
application ID has a prefix value between ‘L’
or “T". If the Application ID has a prefix value
with ‘1, the head unit will invoke the
LaunchApplication action with the application
ID, whereas if it has a prefix value with ‘T,
the head unit invokes TerminateApplication
action with the application ID.
(A_ARG_TYPE_ String)

Required

The notification element contains detailed information
about an event that has occurred in the mobile device 200 (e.g.
a phone) and the detailed information about the event is
delivered to the head unit device 100. The notilD elementis a
unique ID of the notification event, expressed as A_ARG_
TYPE_notilD. The notiType element indicates the type of the
notification event and is provided by an application initiating
the notification. The notiType element specifies the type of
the notification such as Call, Message, or Alarm etc.,
expressed as A_ARG_TYPE_String. The notiStyle element
indicates the display style of the notification, which should be
one of pop-up, banner, full-screen, hidden styles, and the like.
A hidden style is when an indicator for the notification is
displayed to the user without directly displaying message
content to notify the user. The notiTitle element indicates the
type of the notification event. In other words, it is the name of
the event that has occurred. For example, the name of the
event is a new text message or email, expressed as A_ARG_
TYPE_String. The notiBody element provides the body of
the notification event. It includes detailed information about
the event for a user. For example, the notiBody element pro-
vides text message content for a new text message event or a
call ID for an incoming call event, expressed as A_ARG_
TYPE_String. The iconList element provides a list of avail-
able application icons. The icon* element describes an appli-
cation icon and the mimetype element indicates the type of an
icon image. The width element specifies the width of the icon,
expressed as A_ARG_TYPE_INT. The height element speci-
fies the height of the icon, expressed as A_ARG_TYPE_INT.
The depth element specifies the color depth of the icon,
expressed as A_ARG_TYPE_INT. The url element indicates
a URL where the icon is available. The appIDs element pro-
vides a comma-separated list of application IDs. An applica-
tion ID in the appIDs is a unique ID and must be identical to
one on A_ARG_TYPE_AppList. Each application ID has a
prefix value between L. and T. If the application ID has the
prefix value of I, the head unit device 100 invokes the Laun-
chApplication action with the application ID. However, if the
application ID has the prefix value of T, the head unit device
100 invokes the Terminate Application action with the appli-
cation ID. If the notification information message includes
the actions element, the appIDs element has an empty string
value. The appIDs element is expressed as A_ARG_
TYPE_String. The priority element indicates the priority of
the notification. It has one of values “normal” and “emer-
gency”, expressed as A_ARG_TYPE_String. The actions
element provides a list of actions for the notification. The list
is provided by an application initiating the notification so that
a user directly selects one of the actions for the notification.
For example, the user can reply to a new text message or
ignore it. The list includes “Reply” and “Ignore” actions as its
elements. The actions element is only used in the notification
information message, when the head unit device 100 shows
its own notification Ul with buttons to get a user input. Oth-

15

20

25

30

35

45

50

55

60

65

erwise, the mobile device 200 should not include this element
in the notification information message. The actionlID ele-
ment is a unique ID of an action, expressed as A_ARG_TY-
PE_ActionID. When a user selects an action for the notifica-
tion through the native notification UI serviced by the head
unit device 100, the actionlD element should be transmitted
to the mobile device 200. The actionName element is the
name of an action. The name is shown as a button on the native
notification GUIL The applDs element provides a comma-
separated list of application IDs. An application ID in the
applDs element is a unique 1D and must be identical to one on
A_ARG_TYPE_AppList. Each application ID has a prefix
value between “L” and “T”. If the application ID has the
prefix value of “L”, the head unit device 100 invokes the
LaunchApplication action with the application ID. However,
if the application ID has the prefix value of “T”, the head unit
device invokes the TerminateApplication action with the
application ID. The appIDs element is expressed as A_ARG_
TYPE_String.

In step S925, the head unit device 100 configures a notifi-
cation GUI based on the contents of the notification informa-
tion message. Among the elements of the notification infor-
mation message, the actions element is used in configuring a
button through which a user input is received, when the head
unit device 100 configures its own notification GUI based on
the notification information message. In other cases, the
actions element is not included in the notification information
message. In the presence of the actions element, the appIDs
element having a notification element as a parent has an
empty string. However, in the absence of the actions element,
the appIDs element includes application IDs to be executed or
terminated according to a rule, and the head unit device 100
sequentially executes or terminates the application IDs
included in the appIDs element.

In step S930, the user selects an Accept button on the
notification GUI.

Upon the user selection of a button on the notification GUI,
the head unit device 100 transmits to the mobile device 200 an
InvokeNotiAction action request message including an Invo-
keNotiAction action command that has ActionID corre-
sponding to the button and the ID of the notification event
message, NotiID as arguments. The InvokeNotiAction action
has the following arguments as listed in Table 12 below.

TABLE 12
Argument Direction relatedStateVariable
ProfileID IN A_ARG_TYPE_ ProfileID
NotilD IN A_ARG_TYPE_ NotiID
ActionlD IN A_ARG_TYPE_ ActionID
ActionResult ~ OUT A_ARG_TYPE_Bool

US 9,338,235 B2

23

In step S940, the mobile device 200 transmits to the head
unit device 100 a response message including a Boolean
value indicating true or false for the result of the action,
ActionResult.

If ActionResult is true, the head unit device 100 extracts
applDs from the notification information message received
by invoking the GetNotification action and sequentially
executes applications such as VNC, RTP, and the like.

The head unit device 100 extracts the applDs element
including the notification element included in the notification
information message as a parent, extracts appIDs from the
applDs element based on commas, and transmits a Laun-
chApplication action request message including an Laun-
chApplication command having the first (e.g., AppID#1) of
the applDs as an argument to the mobile device 200 in step
S945.

The mobile device 200 transmits to the head unit device
200 a response message including a URL as a return value of
the LaunchApplication command, at which the VNC client
module 190 can access the VNC server module 290 in step
S950. The VNC URL takes the form of “VNC://....”

In step S955, if the VNC server module 290 is accessible
using the VNC URL, the head unit device 100 activates the
VNC client module 190 and transmits the VNC URL to the
VNC client module 190. The VNC client module 190
accesses the VNC server module 290 through the VNC URL.
Then, the head unit device 100 receives a screen, i.e. a GUI
displayed on the display 216 of the mobile device 200 by a
VNC connection or streaming.

The head unit device 100 then transmits to the mobile
device 200 a LaunchApplication action request message
including an LaunchApplication command having the second
(e.g. ApplD#2) of the applDs included in the notification
event message as an argument in step S960.

The mobile device 200 transmits to the head unit device
200 a response message including an RTP URL as a return
value of the LaunchApplication action command, at which
the first RTP server/client module 180 can access the second
RTP server/client module 280 in step S965. The RTP URL
takes the form of “RTP://....”

In step S970, if the second RTP server/client module 280 is
accessible using the RTP URL, the head unit device 100
activates the first RTP server/client module 180 and transmits
the RTP URL to the first RTP server/client module 180. The
first RTP server/client module 180 accesses the second RTP
server/client module 280 through the RTP URL. Then, the
head unit device 100 receives voice data of a call incoming at
the mobile device 200 or transmit user’s voice data of the call
to the mobile device 200, by an RTP connection or streaming.

Once a VNC connection is established in the above man-
ner, a user controls a screen, i.e., a GUI displayed on the
second display 216 of the mobile device 200 through the head
unit device 100.

To terminate specific applications, the mobile device 200
transmits a notification event message to the head unit device
100 in step S975.

To get more detailed event notification information by
invoking the GetNotification action, the head unit device 100
includes an event notification 1D, NotiID set in the notifica-
tion event message and a profile ID in a GetNotification
action request message and transmits the GetNotification
action request message to the mobile device 200 in step S980.

The mobile device 200 transmits to the head unit device
100 a notification information message including detailed
information about an event corresponding to the NotilD as
illustrated in (Table 11) in response to the GetNotification
action request message in step S985.

10

15

20

25

30

35

40

45

50

55

60

65

24

Because the head unit device 100 does not need to show
button information to the user through its own notification
GUI, the detailed notification information message does not
include an actions element and includes application IDs to be
terminated along with a tag value (“L” or “T”, herein “T” is
added before an application ID) in an appIDs element having
anotification element as a parent in a notification information
message and transmits the notification information message
to the head unit device 100.

The head unit device 100 terminates the related applica-
tions by analyzing the appIDs element.

The head unit device 100 transmits to the mobile device
200 a TerminateApplication action request message that
includes a TerminateApplication action command having an
argument with an applD set to AppID#1 and the mobile
device 200 terminates the application corresponding to
AppID#1 in step S990.

In step S995, the head unit device 100 transmits to the
mobile device 200 a TerminateApplication action request
message that includes a TerminateApplication action com-
mand having an argument with an appID set to AppID#2 and
the mobile device 200 terminates the application correspond-
ing to AppID#2.

If the head unit device 100 is to be configured to operate
uniformly, irrespective of whether it provides a notification
GUI or not, the mobile device 200 transmits only a notifica-
tion ID, notiID to the head unit device 100, instead of a
notiEvent state variable, and the head unit device 100 always
acquires detailed information about an event notification by
the GetNotification action. Herein, the argument is the
received notification ID.

FIG. 10 is a diagram illustrating a signal flow for support-
ing a plurality of types of notification services with one appli-
cation.

When the head unit device 100 is connected to the mobile
device 200, it receives an application list from the mobile
device 200 and stores the application list.

The head unit device 100 transmits an action request mes-
sage to the mobile device 200 in step S1010. The action
request message includes a GetApplicationList action com-
mand requesting an application list.

In step S1015, the mobile device 200 transmits the appli-
cation list, ApplicationList to the head unit device 100.

Ifthe head unit device 100 wants to receive notifications for
user-desired applications and their notification types, the
head unit device 100 receives an application list supporting
the notification service by an GetNotiApplicationList action
with the following arguments listed in Table 13 below.

In step S1020, the head unit device 100 transmits to the
mobile device 200 an action request message including a
GetNotiApplicationList action command requesting a notifi-
cation-supporting application list.

TABLE 13
Argument Direction relatedStateVariable
ProfileID IN A__ARG_TYPE_ ProfileID
NotiAppList ouT A_ARG_TYPE_ NotiAppList

The mobile device 200 transmits the notification-support-
ing application list, NotiAppList to the head unit device 100
in response to the GetNotiApplicationlist action command in
step S1025. The notification-supporting application list,
NotiAppList has a data structure illustrated in Table 14 below.

US 9,338,235 B2

TABLE 14
Element Description Parent Availability
notiAppList Application List supportinga — Required
notification.
notiApp* Entry describing one remote notiAppList Required
application supporting
a notification
appID Unique application ID notiApp Required
NotiTypes Comma separated list of notiApp Required

notification types. One
application can support
several notification types

(e.g., “call, sms, facebook,
twitter”. It cannot be an empty
string.

(A_ARG_TYPE_ String)

The notiAppList element indicates an application list sup-
porting notification. The notiApp element describes a remote
application supporting notification. The appID element pro-
vides a unique application ID. The NotiTypes element pro-
vides a comma-separated list of notification types. One appli-
cation can support several notification types, for example,
Call, SMS, Facebook, Twitter, etc. and it should not be an
empty string. It can be expressed as A_ARG_TYPE_String.
Table 14 includes IDs of applications supporting the notifi-
cation service, and notification types supported by each appli-
cation. The mobile device 200 configures XML values as
illustrated in Table 14 by the procedure illustrated in FIG. 3
and transmits the XML values to the head unit device 100 by
the GetNotiApplicationList action.

In step S1030, the head unit device 100 compares the
application list ApplicationList resulting from the GetAppli-
cationList action with the notification-supporting application
list NotiAppList.

The head unit device 100 displays the application list sup-
porting the notification service to a user on a screen, that is, a
notification GUI in step S1035. When necessary, notification
types supported by each application are also be displayed.

In step S1040, the user selects an application and/or a
notification type on the displayed notification GUI.

The head unit device 100 transmits a SetNotiConfiguration
action request message to the mobile device 200 in step
S1045. The SetNotiConfiguration action request message
includes user-selected notification types and a SetNotiCon-
figuration action command requesting registration of these
notification types.

The user selects desired applications and select desired
notification types from among the notification types sup-
ported by each application. The selected values are set as
arguments of the SetNotiConfiguration action as illustrated in
Table 15 below and transmitted to the mobile device 200. The
mobile device 200 internally stores the received arguments.
The mobile device 200 then transmits only the user-desired
notifications based on the arguments to the head unit device
100.

TABLE 15
Argument Direction relatedStateVariable
NotiAppList IN A_ARG_ TYPE_ NotiAppList
MinPriority IN A_ARG_TYPE_ String
ProfileID IN A_ARG_TYPE_ ProfileID

If the user does not receive notifications selectively but
wants to receive all notifications from the mobile device 200,

10

15

20

25

30

35

40

45

50

55

60

65

26
the head unit device 100 sets the value of the NotiAppList
argument to “*” (a default value).

Table 16 lists arguments of a GetNotiConfiguration action
invoked for the head unit device 100 to receive a value set by
the SetNotiConfiguration action or a value set and stored by
the mobile device 200.

TABLE 16
Argument Direction relatedStateVariable
ProfileID IN A_ARG_TYPE_ ProfileID
NotiAppList ouT A_ARG_TYPE_ NotiAppList
MinPriority ouT A_ARG_TYPE_ String

Upon the completion of settings for the notification by the
SetNotiConfiguration action, the head unit device 100 sub-
scribes in order to receive a notification from the mobile
device 200. The subscription operation can be performed at
any time after the head unit device 100 discovers the mobile
device 200. Thereafter, the head unit device 100 receives
notification event information from the mobile device 200.

In step S1050, the head unit device 100 transmits a sub-
scription message requesting subscription to an ML notifica-
tion service to the mobile device 200.

The mobile device 200 transmits to the head unit device
100 a notification event message including event notification
information, only when an event notification occurs regard-
ing the user-selected notification types in step S1055.

According to the present invention, notifications regarding
an incoming/outgoing call, a new message, a device status
alarm at a specific danger level, etc. can be transmitted uni-
directionally or bidirectionally between a head unit device
and a mobile device in an in-vehicle environment. Therefore,
user convenience is increased.

In the foregoing embodiments of the present invention,
modules may be devices.

The embodiments of the present invention can be imple-
mented in hardware, software, or a combination of hardware
and software. The software can be recorded to a volatile or
non-volatile storage device such as a ROM irrespective of
whether they are deletable or re-recordable, to a memory such
as a RAM, a memory chip, a memory device, or an integrated
circuit, or to a storage medium that is optically or magneti-
cally recordable and readable by a machine (e.g. a computer),
suchasa CD, aDVD, amagnetic disk, or amagnetic tape. The
memory included in the mobile device or the head unit device
is an example of a machine-readable storage medium suitable
for storing a program or programs including instructions to
implement the embodiments of the present invention.
Accordingly, the present invention includes a program
including a code for implementing the method as appended in
the claims and a machine-readable storage medium that
stores the program. The program may be transferred elec-
tronically through any medium such as a communication
signal transmitted through a wired or wireless connection and
the present invention embraces equivalents thereof.

Moreover, the mobile device or the head unit device
receives and stores the program from a program providing
device connected to the mobile device or the head unit device
in a wired or wireless manner. The program providing device
includes a memory for storing instructions to perform a pre-
determined in-vehicle notification service method for the
mobile device or the head unit device and information needed
for the in-vehicle notification service method, a communica-
tion module for communicating with the mobile device or the
head unit device wirelessly or by cable, and a controller for

US 9,338,235 B2

27

transmitting a corresponding program to the mobile device or
the head unit device upon request or automatically.

While the present invention has been particularly shown
and described with reference to embodiments thereof, it will
be understood by those of ordinary skill in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the present invention as
defined by the following claims and their equivalents.

What is claimed is:
1. A method for providing an in-vehicle notification service
on a head unit device by the head unit device, the method
comprising:
receiving, from a mobile device by the head unit device, a
first message including a list of identifiers of applica-
tions supporting the in-vehicle notification service;

receiving, from the mobile device by the head unit device,
a notification message including event information
regarding an event occurring in the mobile device, in
response to occurrence of the event of a respective appli-
cation;

transmitting, to the mobile device by the head unit device,

a second message including an identifier of an applica-
tion related to the event in the list of the identifiers of the
applications, based on receiving of the notification mes-
sage; and

displaying, by the head unit device, a User Interface (UI) of

the application related to the event, based on a response
to the second message,

wherein the event information includes the identifier of the

application related to the event from among the applica-
tions.

2. The method of claim 1, further comprising:

receiving a user input on the UI; and

requesting an action corresponding to the user input to be

performed by the mobile device.

3. The method of claim 1, further comprising:

establishing a media session between the mobile device

and the head unit device, based on the response to the
second message,

wherein the Ul is received from the mobile device through

the media session.

4. The method of claim 3, wherein establishing the media
session comprises:

obtaining, from the response to the second message, an

address of a server module for the media session in the
mobile device; and

accessing the server module using the address by a client

module of the head unit device.

5. The method of claim 1, further comprising:

displaying notification types that the user can be notified

about; and

registering a notification type selected by the user from

among the notification types to the mobile device.

6. The method of claim 1, further comprising:

displaying the list of the identifiers of the applications to

the user; and

registering an application selected from among the appli-

cations supporting the in-vehicle notification service by
the user to the mobile device.

7. The method of claim 1, further comprising requesting
the mobile device to terminate the executed application.

8. The method of claim 1,

wherein the second message requests the mobile device to

execute the application related to the event in the mobile
device.

15

20

25

40

45

50

55

65

28

9. The method of claim 1, further comprising:

transmitting, to the mobile device by the head unit device,

athird message requesting the list of the identifiers of the
applications.
10. A non-transitory computer-readable recording medium
having recorded thereon a computer program for executing a
method of providing an in-vehicle notification service on a
head unit device by the head unit device, the method com-
prising:
receiving, from a mobile device by the head unit device, a
first message including a list of identifiers of applica-
tions supporting the in-vehicle notification service;

receiving, from the mobile device by the head unit device,
a notification message including event information
regarding an event occurring in the mobile device, in
response to occurrence of the event of a respective appli-
cation;

transmitting, to the mobile device by the head unit device,

a second message including an identifier of an applica-
tion related to the event in the list of the identifiers of the
applications, based on the receiving of the notification
message; and

displaying, by the head unit device, a User Interface (UI) of

the application related to the event, based on a response
to the second message.

wherein the event information includes the identifier of the

application related to the event from among the applica-
tions.

11. The non-transitory computer-readable recording
medium of claim 10,

wherein the second message requests the mobile device to

execute the application related to the event in the mobile
device.

12. The non-transitory computer-readable recording
medium of claim 10, the method further comprising:

transmitting, to the mobile device by the head unit device,

athird message requesting the list of the identifiers of the
applications.

13. A mobile device for providing an in-vehicle notification
service, the mobile device comprising:

a communication module for communicating with a head

unit device; and

a controller for:

transmitting, to the head unit device, a first message includ-

ing a list of identifiers of applications supporting the
in-vehicle notification service;

identifying a notification message including event infor-

mation about an event occurring in the mobile device, in
response to occurrence of the event of a respective appli-
cation; and

transmitting the notification message to the head unit

device through the communication module;
receiving, from the head unit device, a second message
including an identifier of an application related to the
event in the list of the identifiers of the applications; and

transmitting, to the head unit device, a User Interface (UI)
of the application related to the event, which is executed
in the mobile device,

wherein the event information includes the identifier of the

application related to the event from among the applica-
tions.

14. The mobile device of claim 13, wherein the controller
establishes a media session between the mobile device and
the head unit device, and the Ul is transmitted to the head unit
device using the media session.

15. The mobile device of claim 14, wherein the controller
transmits a response to the second message including an

US 9,338,235 B2

29

address of a server module for the media session to the head
unit device through the communication module, and the
server module is connected to a client module of the head unit
device.

16. The mobile device of claim 13, wherein the controller
receives a request to terminate the executed application from
the head unit device through the communication module and
terminates the application in response to the request.

17. The mobile device of claim 13, wherein

the second message requests the mobile device to execute

the application related to the event in the mobile device.

18. The mobile device of claim 13, wherein the controller
is configured for receiving a third message requesting the list
of'the identifiers of the applications from the head unit device.

19. A non-transitory computer-readable recording medium
having recorded thereon a computer program for executing a
method of providing an in-vehicle notification service on a
head unit device by a mobile device, the method comprising;

transmitting, to the head unit device, a first message includ-

ing a list of identifiers of applications supporting the
in-vehicle notification service;

5

10

30

identifying a notification message including event infor-
mation about an event occurring in the mobile device, in
response to occurrence of the event of a respective appli-
cation; and

transmitting, by the mobile device, the notification mes-
sage to the head unit device;

receiving, from the head unit device, a second message
including an identifier of an application related to the
event in the list of the identifiers of the applications; and

transmitting, to the head unit device, a User Interface (UI)
of the application related to the event, which is executed
in the mobile device,

wherein the event information includes the identifier of the
application related to the event from among the applica-
tions.

20. The non-transitory computer-readable recording

medium of claim 19, wherein the second

message requests the mobile device to execute the appli-

cation related to the event in the mobile device.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,338,235 B2 Page 1of1
APPLICATION NO. 1 13/630621

DATED - May 10, 2016

INVENTOR(S) : Ho-Yeon Park et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the claims
Column 28, line 25, Claim 10, line 21:

“to the second message.” should be -- to the second message, --

Signed and Sealed this
Twentieth Day of September, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

